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Abstract

In this work, an efficient boundary element formulation has been presented for three-dimensional steady-state heat conduction anal-
ysis of fiber reinforced composites. The cylindrical shaped fibers in the three-dimensional composite matrix are represented by a system of
curvilinear line elements with a prescribed diameter which facilitates efficient analysis and modeling together with the reduction in dimen-
sionality of the problem. The variations in the temperature and flux fields in the circumferential direction of the fiber are represented in
terms of a trigonometric shape function together with a linear or quadratic variation in the longitudinal direction. The resulting integrals
are then treated semi-analytically which reduces the computational task significantly. The computational effort is further minimized by
analytically substituting the fiber equations into the boundary integral equation of the material matrix with hole, resulting in a modified
boundary integral equation of the composite matrix. An efficient assembly process of the resulting system equations is demonstrated
together with several numerical examples to validate the proposed formulation. An example of application is also included.
� 2007 Published by Elsevier Ltd.
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1. Introduction

The heat flow in a composite is a complex phenomenon
and can only be understood through a proper microme-
chanical analysis. A suitable numerical method can be used
for this purpose in which the matrix and the fibers are mod-
eled as separate regions. However, for a relatively large
problem with numerous fibers, this type of approach is
not very practical, because, very large amount of comput-
ing resources as well as significant amount of modeling
efforts are necessary. Moreover, when fiber diameter
becomes very small, multi-region approach often leads to
inaccuracies particularly for a large difference in material
properties, resulting in the coefficients in the system matrix
differing by orders of magnitude. For this reason, one
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needs to use a numerical method in which the individual
fibers or individual bundle of fibers can be idealized in an
efficient manner within a three-dimensional (3D) matrix.
At the same time, the analysis must be sophisticated
enough to take into account of high temperature gradient
resulting from the diffusion of temperature from the fiber
to the matrix and allow for the interaction between the
fibers.

Boundary element method (BEM) is almost uniquely
favorable for this task. The reduction of dimensionality
of the problem using BEM enables very efficient modeling
and analysis when combined with an efficient idealization
of the fibers within a matrix. Furthermore, developments
of BEM over the years have shown generality and versatil-
ity of the method to successfully analyze 3D heat conduc-
tion problems [1–4].

There are many published papers written on heat trans-
fer, elasticity and thermoelasticity that are described as
papers on composites, but with a closer examination, one

mailto:pkb@eng.buffalo.edu


Nomenclature

aij direction cosines between the local and global
coordinate system

C integration constant
F temperature kernel
G flux kernel
h film coefficient
k conductivity
L(gi,gi) boundary element shape function
Mc circular shape function
ni normals in local coordinates
N number of fibers

Na longitudinal shape function
Q flux
R fiber radius
S surface of the outer boundary
Sn surface of the hole
T temperature
Ta the ambient temperature
xi coordinates of integration point
h angle
ni coordinates of field point
gi local axes system
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sees that these are really anisotropic BEM papers for
homogeneous regions. Mostly these deal with two-dimen-
sional (2D) applications but a few deal with 3D applica-
tions. While these are relevant for the global analyses of
composites, one cannot regard these to be relevant for
micromechanical studies of composites.

There are several 2D multi-region modeling papers
involving regular BEM modeling of large inclusions within
a matrix. Unfortunately, these analyses require that the
inclusion remain large enough so that there is no evidence
of any instability. Applications of these types can be found
for heat transfer, elasticity as well as thermoelasticity.
There are also a few papers that describe a few large inclu-
sions within a three-dimensional body.

Some authors such as Nishimura and Liu [16] describe
quite large single region BEM system with a large number
of internal surfaces to which they apply insulated or rigid
boundary conditions. These may look like composites, but
in reality, these are holes in a 3D solid. In order to be rele-
vant for composites, the analysis must include compressibil-
ity, flexibility and heat transfer through them by modeling
the included regions with their material properties.

The only paper which deals with an elastic microme-
chanical analysis by BEM was published by Banerjee and
Henry [6]. They recognized that in a multi-region BEM,
one can only solve inclusion problems if the size of the ele-
ments on the surface of the region to that on the surface of
the inclusion remains within a ratio of 100–1000 depending
on the quality of the numerical implementation. For long
thin fibers, one needs to focus on somehow treating the
geometric features analytically. This observation led to
the developed Fourier Series based shape functions used
in the present work.

In this work, an efficient and simplified BEM formula-
tion for steady-state heat conduction analysis of 3D solids
with fiber inclusions has been developed. The cylindrical
shaped fibers are idealized as a system of curvilinear line
elements with a prescribed diameter. The variations in
the temperature and flux fields are assumed in the circum-
ferential direction in terms of a trigonometric shape func-
tion together with a linear or quadratic variation along
the longitudinal direction. The resulting integrals are then
semi-analytically integrated [5]. Based on the compatibility
conditions on the interface of the fiber and the matrix, the
equations for fibers are simplified and then analytically
substituted into the boundary integral equation of the com-
posite matrix with holes to produce a modified boundary
integral for the problem. A very efficient assembly process
of the system equations is then developed where the tem-
peratures on the interfaces of the matrix and the fibers
are eliminated through a back-substitution of the fiber
equations into the system equations which are made up
exclusively from equations written for the composite
matrix (on the outer boundary surface and on the surface
of the hole). The present analysis has been implemented
in a general purpose multi-region BEM code and several
numerical examples using the developed algorithm are
presented.

2. Boundary integral equation formulation

Following usual procedures, the boundary integral
equation for the temperature at a point n inside a 3D solid
with a hole can be written as [1,3]

CðnÞT ðnÞ ¼
Z

S
½GOðx; nÞqOðxÞ � F Oðx; nÞT OðxÞ�dSðxÞ

þ
XN

n¼1

Z
Sn
½GHðx; nÞqHðxÞ

� F Hðx; nÞT HðxÞ�dSnðxÞ ð1Þ

In the above expression, G, F are the fundamental solutions
of the governing differential equations of the matrix of infi-
nite extent [2] given by

Gðx; nÞ ¼ 1

4pr
1

k

� �
ðTemperature kernelÞ

F ðx; nÞ ¼ 1

4pr2

yknk

r

h i
ðFlux kernelÞ

where xi is the coordinates of integration point and ni is the
coordinates of the field point, yi = xi � ni, r2 = yiyi.



Fig. 1. Generation of the surface of the fiber (and the surface of the hole
containing the fiber) from user input nodes.
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C(n) is a constant whose value is dependent on the
geometry of the position of the point n; T and q are temper-
atures and fluxes, respectively; S, Sn are the surfaces of the
outer boundary of the matrix and the nth hole (will be used
later for fiber); N is the number of individual fibers. The
superscripts O and H denote the quantities on the outer
surface of the matrix and the quantities on the surface of
the hole, respectively.

The conventional boundary integral equation for tem-
perature can also be written for each of the N fibers. For,
the temperature at a point n inside the nth fiber can be writ-
ten as

CFðnÞT ðnÞ ¼
Z

Sn
½GFðx; nÞqFðxÞ � F Fðx; nÞT FðxÞ�dSnðxÞ ð2Þ

In the above, GF, FF are the fundamental solutions of
the nth fiber; CF(n) is a constant whose value is dependent
on the position of the point n in fiber n; TF, qF are temper-
atures and fluxes, respectively, associated with the nth fiber.
Sn is the surfaces of the nth fiber. The superscripts F is used
to denote the quantities on the surface of the fiber.

Next, we examine the interface conditions between the
matrix and the fiber. For a perfect bond, in order to satisfy
the compatibility conditions, the following relationships
must hold

T HðxÞ ¼ T FðxÞ ð3aÞ
qHðxÞ ¼ �qFðxÞ ð3bÞ
Upon consideration of the surface normals at the interface
and examination of F kernels, we can write the following
relation for the nth fiber.

F Fðx; nÞ ¼ �F Hðx; nÞ ð3cÞ
Substitution of Eqs. (3) into Eq. (2) yields the following
modified boundary integral equation for fiber n.

CFðnÞT ðnÞ ¼
Z

Sn
½�GFðx; nÞqHðxÞ þ F Hðx; nÞT HðxÞ�dSnðxÞ

ð4Þ
Finally adding N fiber Eqs. (4) into Eq. (1) and canceling
terms, leads to the following modified boundary integral
equation for the matrix with hole

CðnÞT ðnÞ ¼
Z

Sn
½GOðx; nÞqOðxÞ � F Oðx; nÞT OðxÞ�dSnðxÞ

þ
XN

n¼1

Z
Sn
½Gðx; nÞqHðxÞ�dSnðxÞ ð5Þ

where

Gðx; nÞ ¼ GHðx; nÞ � GFðx; nÞ ð6Þ
In the above, CðnÞ is a constant dependent on the position
of the point n.

3. Analytical integration around a fiber inclusion

In this work, we have adopted the semi-analytical inte-
gration procedure developed by Banerjee and Henry [5]
for elastic analysis of 3D solids with small diameter fiber
inclusions. Using this approach, the fibers modeled using
fiber elements which are defined by describing the center-
line of the tubular (or curvilinear) fiber with nodal points;
defining the connectivity of the nodal points; and specify-
ing the radius of the fiber at each of those nodal points
(refer to Fig. 1). Internally the program generates the sur-
face of the fiber and the hole in which the resulting temper-
atures and fluxes are represented using a trigonometric
circular shape function in the circumferential direction
and a curvilinear shape function of any order in the longi-
tudinal direction. A curved fiber thus can be described by a
number of fiber elements connected end to end, and any
fiber element not connected to another is assumed to be
closed at the end by a circular disc.

The essential part of the formulation is then to convert
the 2D surface integration of the fiber (and of the hole)
to a one-dimensional (1D) integration [6,7]. By performing
an analytical integration of the fiber in the circumferential
direction, the computational burden is significantly
reduced and simple numerical integration of the resulting
line element can be carried out in the longitudinal direc-
tion. We adopt this semi-analytical integration approach
in our present implementation.

In order to perform an analytical integration in the cir-
cumferential direction, the 3D kernel functions are first
expressed in local coordinates with the center of the coor-
dinate system coinciding with the center of the fiber/hole
and the z axis aligned with the centerline of the fiber. The
relative translation n0i is added to the field coordinate ni

and the rotation is applied using the following vector
transformation.

ni ¼ aij
�nj þ n0i ð7Þ

where aij are the direction cosines between the axes of the
local ð�njÞ and global (ni) coordinate systems and the bar de-
notes a local variable.
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Fig. 2. Values of three nodal circular shape functions about the fiber/hole.
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The integration point xi for a ring can thus be expressed
in cylindrical coordinates relative to the center of the fiber/
hole as

x1 ¼ R cos h x2 ¼ R sin h x3 ¼ 0 ð8Þ

where R represents the radius of the fiber with R ¼
ðx2

1 þ x2
2Þ

1=2.
The normal vectors are transformed using

n1 ¼ nr cos h n2 ¼ nr sin h n3 ¼ nz ð9Þ

where nr and nz represent the normals of the side of the hole
in local coordinates and are dependent on the change in the
radius of the fiber/hole. On the side of a straight hole
nr = 1, nz = 0, and on the flat surface closing the end of
the hole/fiber nr = 0, nz = 1.

In the next step, a circular shape function is employed to
approximate the variation in the temperatures and fluxes
about the circumference of the fiber/hole using three nodes
generated internally by the program around the user input
nodes along the centerline of the fibers. The circular shape
function is multiplied and integrated with the 3D kernel, so
that the nodal values of variables can be brought outside
the integral. Using the shape functions mentioned above,
the temperature and flux can be expressed as

T ¼ M cT c q ¼ M cqc ð10Þ

In the above expressions Tc are nodal values of tempera-
tures and qc are nodal values of fluxes respectively. The
summation over c is implied, c = 1, 2, 3 for the three cir-
cumferential nodes.

The circular shape functions used in the current work
are depicted in Fig. 2. They can be expressed as

M1ðhÞ ¼ 1

3
þ 2

3
cos h

M2ðhÞ ¼ 1

3
þ

ffiffiffi
3
p

3
sin h� 1

3
cos h

M3ðhÞ ¼ 1

3
�

ffiffiffi
3
p

3
sin h� 1

3
cos h

ð11Þ

Also a modified shape function is used in the integration
over the ends of the hole to ensure continuity temperature
and flux at the center of the end surface which is given by

M c ¼ aM c þ b=3; c ¼ 1; 2; 3 ð12Þ

with

a ¼ r=R and b ¼ ðR� rÞ=R ð13Þ

where R is the radius of the hole at the end; r is the location
of the integration (Gauss) point as it sweeps from r = 0 to
r = R; and Mc is the circular shape function defined earlier.

The last term on the right-hand side of Eq. (5) can now
be analytically integrated in the circumferential direction.
As an example, for the nth hole, the integrals can be
expressed asZ

Sn
Gðx;nÞqHðxÞdSnðxÞ¼

Z
Cn

Z 2p

0

GlocalðR;h;z;�nÞM cRdhqc dCn

¼
Z

Cn
GcðR;z;�nÞqc dCnðzÞ ð14Þ

where the integration over Cn as indicated above is now a
simple one-dimensional curvilinear integration along the
hole and Gc represents the analytically integrated fiber/hole
kernels.

The kernel functions of the fiber/hole resulting from the
above analytical integration contain functions of elliptic
integrals as defined in the Appendix. In general, these ellip-
tic integrals are expressed numerically by common series
approximations [6,8–11]. For a range of input values (coor-
dinate locations), several higher order elliptical integral
functions were found to produce inaccurate numerical
results. To overcome this problem, several new series were
derived using a best fit polynomial approximation (as a
function of the modulus of elliptic integrals) using values
of the integrals calculated by a very accurate numerical
integration in the circumferential direction.

It should be pointed out that a fiber having curvature
along its length will differ in surface area about the circum-
ference on the curved portion of the fiber. This is neglected
in the present formulation since the analytical integration is
performed on an axisymmetric ring in which the surface
area is constant about the circumference. This error, how-
ever, is small and disappears completely on a straight tubu-
lar fiber. For this reason, we cannot model an abrupt 90�
bend on a fiber geometry.
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4. Discretization

Once the integration in the circumferential direction is
complete, a fiber in 3D solid can now be modeled as a
2D curvilinear line element with a prescribed radius at each
longitudinal node with linear or quadratic variations of the
field variables along the fiber elements. This requires finite
discretization of the fibers in the longitudinal direction.
Following usual discretization procedure [1], Eq. (4) can
be discretized as

CFT ðnÞ ¼ �
XP

p¼1

Z
Cp

GF cðx; nÞN aðgÞdCp

� �
qac

þ
XP

p¼1

Z
Cp

F Hcðx; nÞN aðgÞdCp

� �
T ac ð15Þ

where, as mentioned above, the circumferential integration
has already been performed analytically and P is the num-
ber of fiber elements. Na(g) indicates a shape function over
the curvilinear fiber element. Summation over a is implied.
qac and Tac are nodal values of flux and temperature on the
surface of the fiber element, respectively.

In a similar fashion, Eq. (5) can be discretized using 1D
(for the hole) and 2D (for the outer boundary) shape func-
tions, which can be expressed as

CT ðnÞ ¼
XQ

q¼1

Z
Sq

GOðx; nÞLbðg1; g2ÞdSq

� �
qb

�
XQ

q¼1

Z
Sq

F Oðx; nÞLbðg1; g2ÞdSq

� �
T b

þ
XP

p¼1

Z
Cp

Gcðx; nÞN aðgÞdCp

� �
qac ð16Þ

where Q is the number of boundary elements on the outer
surface of the matrix in the region; Lb(g1,g2) represents a
2D shape function. Summation over b is implied; P is the
number of fiber elements; qb and Tb are nodal values of flux
and temperature on the outer surface of the matrix, respec-
tively; qac and Tac are nodal values of flux and temperature
on the surface of the hole, respectively.

It should be noticed that the temperatures and fluxes on
a fiber/hole vary in the longitudinal as well as in the cir-
cumferential direction. For example, the temperature vari-
ations can be expressed as

T ¼ M cN aT ac

The circular shape function Mc has been analytically inte-
grated into the kernel functions of Eqs. (15) and (16).
The ends of the fibers are assumed to be flat surface and
a 1D numerical integration with respect to r is carried
out in the radial direction. The coefficients obtained
from the integration over the end are lumped with their
respective coefficients from the integration of the side of
the fiber.
5. Numerical integration

The complexity of the integral in the discretized Eqs.
(15) and (16) necessitates the use of numerical integration
for their evaluation. The steps involved in the numerical
integration process for a given element are described briefly
in the following paragraphs.

Using appropriate Jacobian transformations, a curvilin-
ear fiber element or boundary element is mapped on a unit
line or on a flat unit cell, respectively.

Depending on the proximity between the field point n
and the element under consideration, element subdivisions
and additional mapping are invoked.

Gaussian quadrature formulas are employed for the
evaluation of the discretized integral over each element
(or sub-element). These formulas approximate the integral
as a sum of weighted function values at designated points.
The error in the approximation is dependent on the order
of the Gauss points employed in the formula. To minimize
this error while at the same time maintaining computa-
tional efficiency, optimization schemes are used to choose
the best number of gauss points for a particular field point
and element [12–14].

When the field point coincides with a node of the ele-
ment being integrated, the integration becomes singular.
In that case, the value of the coefficients of the F kernel cor-
responding to the singular node cannot be evaluated accu-
rately by the numerical integration. Instead, after the
integration of all elements is complete, an equipotential
technique [13] is applied to indirectly calculate the values
of the singular terms. A discussion on these problems for
3D elastic bodies with holes and inclusions can be found
in Banerjee and Henry [5] and Henry and Banerjee [6]. This
equipotential technique when applied to the original intact
boundary integral equation is often called regularization of
the singularity.
6. Assembly of system equations

The approach to writing an efficient algorithm is to keep
the number of system equations to a minimum by eliminat-
ing all unnecessary unknowns from the system. The strat-
egy used in this work is to retain in the system only flux
variables on the fiber–matrix interface. This is much more
efficient than a general multi-region approach where both
temperatures and fluxes are retained as unknowns on the
interface. The elimination of the temperatures on the inter-
face is achieved through a back-substitution of the fiber
equations into the system equations which are formed
exclusively from equations written for the matrix (on the
outer surface and on the surface of the holes). The proce-
dure is described below.

Eq. (16) is used to generate a system of equations for
nodes on the outer surface of the composite matrix and
for nodes on the surface of the holes containing fibers.
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Written in matrix form, we have On the matrix outer
surface:

GOqO � F OT O þ GqH ¼ 0 ð17aÞ

On the matrix hole surface:

GOqO � F OT O þ GqH ¼ IT H ð17bÞ

where qO and TO are fluxes and temperatures on the outer
surface of the matrix; qH and TH are fluxes and tempera-
tures on the hole surface; I is the identity matrix; GO and
FO matrices contain coefficients from the integration over
the outer boundary G matrix contains coefficients inte-
grated about the fiber/hole.

Our objective is to eliminate TH from the system. To this
end, Eq. (15) is written for every node on a fiber

GF2qF ¼ F F2T F

In the above, superscript F2 identifies the equations written
at points located at r = 1.25 times the fiber radius (where
CF

ij ¼ 0) as the boundary is approached from outside the fi-
ber region.

Noting T H = T F, and qH = �qF we have

F F2T H ¼ �GF2qH ð18Þ
Pre-multiplication of Eq. (17b) by the FF2 matrix yields

F F2GOqO � F F2F OT O þ F F2GqH ¼ F F2T H ð19Þ

Eq. (18) can now be set equal to Eq. (19) and the final form
of the system is derived.

On the outer surface:
GOqO � F OT O þ GqH ¼ 0 ð20aÞ

On the hole surface:

F F2GOqO � F F2F OT O þ ðF F2Gþ GF2ÞqH ¼ 0 ð20bÞ

At every point on the outer surface, either the flux or the
temperature is specified and on the outer surface of the hole
only fluxes are retained. Therefore, the number of equa-
tions in the system is equal to the final number of un-
knowns, and hence, the system can be solved. Thereafter,
(17b) is used to determine the temperature on the fiber–ma-
trix interface.

It should be noted that since the temperature about a
particular hole is present only in the fiber equation corre-
sponding to that hole, back-substitution can be performed
for one fiber at a time in a more efficient manner than back-
substitution of all fibers at once. Further, nowhere in the
assembly process is a matrix inversion necessary. This effi-
cient assembly process was made possible due to the unique
formulation of the modified boundary integral equations
derived in Section 2.
When the composite matrix is divided into a multi-
region model, the above fiber assembly can be performed
for each region independently. Thereafter, equilibrium
and compatibility conditions are invoked at common
interfaces of the sub-structured matrix composite. After
collecting together the known and unknown boundary
quantities, the final system can be expressed as

Abx ¼ Bby ð21Þ
where x is the vector of unknown variables on the outer
boundary and unknown fluxes along the fiber–matrix inter-
face; y is the vector of known variables on the outer bound-
ary of the composite matrix; Ab and Bb are associated
coefficient matrices
7. Interior quantities

Once all of the temperatures and fluxes are known on
the matrix outer surface and on the fiber–matrix interface,
interior quantities can be determined at any point in the
composite matrix or fiber. For temperature, either the con-
ventional boundary temperature integral Eq. (1) or (2) can
be employed or alternatively, the modified Eq. (4) or (5)
can be used.

For example, the interior flux within the composite
matrix can be determined using the modified boundary
integral Eq. (5) as

qiðnÞ ¼
XQ

q¼1

Z
Sq

EO
i ðx; nÞLbðg1; g2ÞdSqðxÞ

� �
qb

�
XQ

q¼1

Z
Sq

DO
i ðx; nÞLbðg1; g2ÞdSqðxÞ

� �
T b

þ
XP

p¼1

Z
Cp

EHc
i ðx; nÞN aðgÞdCpðxÞ

� �
T ac ð22Þ

where

Ei ¼ �k
oG
oni

ð23Þ

Di ¼ �k
oF
oni

ð24Þ

Ei ¼ �k
oG
oni

ð25Þ

In Eqs. (23)–(25), k denotes the conductivity, q is the flux,
T is the temperature and G and F are temperature and flux
kernels, respectively, defined before.

A similar equation can be written for the heat flux inside
a fiber. These equations, however, are only valid for inte-
rior points, whereas, when n is on the boundary, known
values of temperature, fluxes and shape functions can be
used together with the following relationships, to determine
the heat flux.



Fig. 4. Unit cube with one, five and nine fibers 2D plane strain multi-region BEM meshes.

Fig. 3. Unit cube with one, five and nine fibers BEM meshes for fiber element formulation.
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Table 1
Precision comparison with different radii (cube with nine fibers)

Distance
along cube

Case A: radius = 0.1 Case B: radius = 0.05

2D
BEM

Fiber
element

Error
(%)

2D
BEM

Fiber
element

Error
(%)

0 64.3 65.7 2.1 89.8 90.0 0.2
0.125 63.3 64.7 2.2 89.5 89.7 0.2
0.25 61.7 62.9 1.9 88.9 89.2 0.3
0.375 61.0 62.2 1.9 88.7 88.9 0.2
0.5 60.7 61.9 1.9 88.5 88.8 0.3
0.625 61.0 62.3 2.1 88.7 88.9 0.2
0.75 61.7 63.0 2.1 88.9 89.2 0.3
0.875 63.3 64.6 2.0 89.5 89.7 0.2
1 64.3 65.6 2.0 89.8 90.0 0.2

Table 2
CPU time comparison for different meshes

Analysis Modeling mesh CPU
time
(s)

Fiber modeling 24 Boundary elements, one 4-element insert 1.5
96 Boundary elements, one 4-element insert 5.8
96 Boundary elements, five 4-element
inserts

9.8

3D multi-region
BEM modeling

96 Boundary elements, 32 elements on
insert surface (one cylinder)

9.5

Fig. 6. Effective conductivity of a cube with nine fibers, BEM mesh used
for the outer boundary (fiber elements not shown).
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qi ¼ �k
oT
oxi

ð26Þ

oT
oxj

oxj

ogi

¼ oT
ogi

ð27Þ
8. Numerical accuracy and efficiency

8.1. Introduction

In order to test the validity of the proposed formulation,
several numerical examples are presented using fiber ele-
ment formulation for steady-state heat conduction analy-
sis. The numerical results obtained using the present
algorithm are compared with those of multi-region BEM
and other available solutions. As mentioned earlier, the
use of multi-region BEM for fibers of small diameter
becomes progressively inaccurate as the fiber diameter
decreases while the present fiber element approximation
becomes more accurate for the smaller diameter fiber. In
the following verification examples, we have chosen the
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Fig. 7. Effective conductivity in a cube for various fiber diameters.

Fig. 8. Cube with random fibers: (a) surface discretization; (b–f) orien-
tation of variable length fibers within the unit cube containing 5, 10, 15, 20
and 25 fibers, respectively.
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diameters of the fibers such that the multi-region BEM
remains the most accurate results.

8.2. Cube with one, five and nine fibers

In this first verification example, the steady-state heat
flow through a 3D unit cube with one, five and nine fibers
is studied. The conductivity of the fibers is assumed to be
10 times the conductivity of the matrix material. The radius
of each fiber is taken as 0.1 for Case A and 0.05 for Case B.
A uniform flux of 100.0 is applied to a side of the cube par-
allel to the fibers. The opposite side of the cube is main-
tained at a temperature of 0 �C. All other faces of the
cube are insulated.

The BEM meshes used in this problem for the 3D fiber
element formulation are shown in Fig. 3 and the corre-
sponding multi-region 2D BEM meshes are shown in
Fig. 4. The outside boundary mesh for the fiber element
formulation consists of 384 eight-noded quadratic elements
(64 elements on each face), whereas, 4 three-noded qua-
dratic elements are used to model each fiber as shown in
Fig. 3. The 2D BEM meshes uses 3-noded quadratic ele-
ments on the boundary and on the surface of the holes
and fibers as depicted in Fig. 4.

The resulting temperature profiles on the face subjected
to flux are shown in Fig. 5 for three fiber arrangements.
The numerical results of the fiber element formulation
are seen to be in excellent agreement with the correspond-
ing 2D multi-region BEM results. Here, the effect of the
number of fibers on the temperature profile is of particular
interest. As the number of fibers is increased, the overall
conductivity of the cube is increased. Hence, the heat from
the applied flux is carried away (to the face which is main-
tained at 0 �C) at a higher rate, resulting in lower temper-
atures. Also note, the local temperature minimums in the
temperature profiles are associated with the close proximity
of the fibers near the flux boundary.
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In order to illustrate the effects of the fiber radius on the
accuracy of the results of 3D fiber modeling and the 2D
multi-region modeling, the temperature distribution along
the face subjected to flux are listed in Table 1 for different
fiber radii. It shows that the present fiber modeling
becomes more accurate for the smaller radius (0.05), even
the results for the larger radius (0.1) are quite acceptable.

For the demonstration of the computation efficiency, a
full 3D multi-region modeling was done for the problem
of one fiber inclusion (since the modeling effort for more
fibers as multi-region problem would have consumed a
very large amount of modeling effort). The CPU times on
HP B2000 Workstation are summarized in Table 2. All
of the models here lead to the same numerical results. It
is important to note that in addition to the vastly reduced
modeling effort, the CPU times of the line element fiber
modeling are significantly small. This advantage of course
is likely to be magnified in problems in which a large num-
ber of fibers exist.
8.3. Heat conduction: effective conductivity in a fiber

composite

In the present example, the conductivity of heat flow in a
unit cube with nine fibers is investigated. The outside
boundary mesh of the 3D BEM model utilized in this
example is shown in Fig. 6. In this problem, 24 elements
are used to model the outer boundary whereas, each of
the nine fibers is modeled using 1 three-noded fiber ele-
ment. The fibers are assumed to be perfectly bonded to
the matrix so that the resistance of the heat flow across
the interface is zero. The cube is subjected to a temperature
of 0 �F on a face perpendicular to the fibers and 100 �F on
the opposite face. The remaining four faces are insulated.
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Fig. 9. Effective conductivity in
The total heat flux through the cube is calculated and the
effective conductivity in the direction parallel to the fibers
is then found. When the boundary conditions are rear-
ranged to produce heat flow perpendicular to the fibers,
the effective conductivity in the transverse direction can
also be determined. The specified radius of the fibers is
changed to simulate different void ratios, therefore mini-
mizing the effort required for re-analysis of the cube with
different fiber to total volume ratios. This illustrates the
main convenience of the present formulation for the
micro-mechanical analysis.

The fiber composite has the following conductivities

kmatrix ¼ 8:2 Btu=h ft Fð14:19 W=m CÞ
kfiber ¼ 32:0 Btu=h ft Fð55:38 W=m CÞ

In Fig. 7, the effective conductivities in both the lateral
and transverse directions are shown as a function of the
ratio of the fiber volume to the total volume of the compos-
ite specimen. The solutions generally are in good agreement
with the approximate solutions by Hopkins and Chamis
[15] at low fiber to total volume ratios and slightly deviate
from one another when the fiber to total volume ratio is
large. It should be noted that Hopkins and Chamis [15]
have essentially used the theory of mixture in their deriva-
tion in which the effect of multiple fiber interacting with
each other through the matrix is not present in their theory.
Hence the present results which include this interaction are
likely to be more relevant.
8.4. Heat flow in a cube with random fibers

Next, we analyze the heat flow in a unit cube with ran-
domly oriented fibers as shown in Fig. 8. In this analysis,
the left end of the cube is subjected to a prescribed temper-
15 20 25

ber of fibers

a cube with random fibers.
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ature of 100 �C and for the right end, a temperature of 0 �C
is specified. All other surfaces are assumed to be
insulated.

Fig. 9 shows the equivalent thermal conductivity of the
cube for different fiber arrangements. In this analysis, the
Fig. 10. Fiber reinforced turbine blade, BEM mesh.

Fig. 11. Distribution of heat flux at stea
thermal conductivity of the matrix is assumed to be 100
times more than the conductivity of the fibers.
9. An example of application

In this example, an attempt has been made to apply the
present fiber element formulation to steady-state heat con-
duction analysis of a turbine blade. A boundary element
discretization of a turbine blade with fibers is shown in
Fig. 10. Half symmetry is employed in this model which
consists of 92 quadratic elements on the outer boundary.
The model is 58.2 mm long, 13.9 mm wide, the radius of
the base is 6.95 mm, and the tip is 1.98 mm (from the plane
of symmetry) in thickness at the largest point. The blade
also consists of 26 fibers (13 fibers per side) running from
the tip of the blade to half way through the base as shown
in Figs. 8 and 9. The radius of each fiber is 0.15 mm. Seven
quadratic fiber elements are used to model each fiber and
thus the total number of fiber elements used in this problem
is 92. The conductivity of the blade is 0.0216 W/mm �C and
the conductivity of the fibers is 100 times the conductivity
of the blade. A gas at a temperature of 1200 �C is assumed
to flow over the blade while a gas at a temperature of
500 �C surrounds the base of the blade. The difference
between the surface temperature and the ambient is
assumed to be linearly related to the heat flux via a film
coefficient which can be expressed as

Q ¼ �hðT a � T Þ

where, Q is the heat flux, T and Ta are surface temperature
and ambient temperature, respectively. Q is positive if heat
dy-state for the homogeneous blade.



Fig. 12. Distribution of heat flux at steady-state for fiber reinforced blade.
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is leaving the body and is negative when heat is entering the
body. Using this type of boundary condition, Q is not spec-
ified, but its value is determined from h, Ta and the un-
known temperature at the surface T.

In this problem, at the leading edge of the blade a film
coefficient is h = 0.003395 W/mm2 �C and tapers off to
h = 0.00064 W/mm2 �C at the trailing edge. At the base
of the blade the film coefficient of h = 0.00005 W/mm2 �C
is assumed.

A steady-state heat conduction analysis is first carried
out on a homogeneous blade (no fiber) with a conductivity
of 0.0216 W/mm �C. The resulting heat flux distribution is
shown in Fig. 11.

Then the blade is re-analyzed with fibers and the corre-
sponding steady-state heat flux distribution is presented in
Fig. 12. As expected, the overall higher conductivity of the
fibers increases the heat flow through the blade from the tip
towards the base, resulting in a different heat flux distribu-
tion as compared to the homogeneous blade.
10. Conclusions

An efficient and comprehensive BEM formulation for
the steady-state 3D heat conduction analysis of composites
has been developed. The analysis is shown to be sufficiently
accurate and can be applied to solve realistic practical
problems of different scale.

An attractive feature of the present implementation lies
in the fact that the arrangements of fibers can be altered
with relative ease thus avoiding the effort for remodeling.
Also, various fiber to matrix ratios can be simulated just
by changing the fiber radius. All of these features result
in significant savings in computing cost and time.
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Appendix A

This Appendix discusses about the analytically inte-
grated kernel functions of the fiber/hole about the
circumference.

Referring to Fig. 13, let (rx,hx,zx) and (rn,hn,zn) are the
coordinates of the field point x and the source point n,
respectively. The locations of the three nodes on the cir-
cumference for the circular shape function are presented
in Fig. 2. After expressing the kernel functions in local
coordinates with the center of the coordinate system coin-
ciding with the center of the hole/fiber and the z-axis
aligned with the centerline of the fiber, as described in Sec-
tion 3, using the above notations the analytically integrated
temperature and flux kernels are presented below.
A.1. Analytically integrated temperature kernel

The product of the free space Green’s function and the
circular shape function (defined in Section 3) can be analyt-
ically integrated with respect to hx resulting the following



Fig. 13. A body in cylindrical coordinate system.
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expressions for the three values of Gc with c = 1, 2, 3 (cor-
responding to the three values of hn ¼ 0;þ 2p

3
and � 2p

3
)

G1 ¼ 1

3

R
4pk

P 1 þ
2

3
cos hn

� �
R

4pk
P 2

G2 ¼ 1

3

R
4pk

P 1 þ
ffiffiffi
3
p

3
sin hn �

1

3
cos hn

 !
R

4pk
P 2

G3 ¼ 1

3

R
4pk

P 1 þ �
ffiffiffi
3
p

3
sin hn �

1

3
cos hn

 !
R

4pk
P 2

In the above expressions, k is the conductivity and R is
the radius of the fiber/hole. The terms P1 and P2 are func-
tions of elliptic integrals defined as

P 1 ¼
Z 2p

0

dh
r
¼ 4C1=Rd

P 2 ¼
Z 2p

0

cos hdh
r

¼ �4ð2C2 � C1Þ=Rd

with

C1 ¼
Z p=2

0

dh

ð1� m sin2 hÞ1=2
¼ j

C2 ¼
Z p=2

0

cos2 hdh

ð1� m sin2 hÞ1=2
¼ ðe� m1jÞ=m

rðx; nÞ ¼ Rd 1� m
2
ð1þ cos hÞ

h i1=2

¼ Rd 1� m sin2 h
2

� �1=2

Rd ¼ ½ðrx þ rnÞ2 þ ðzx � znÞ2�1=2

where the modulus m and the complementary modulus m1

of the elliptical integrals are given by
m ¼ 4rxrn

R2
d

m1 ¼ 1� m

In the above expressions, j and e are elliptic integrals of
first and second kind [9] given by

j ¼
Z p=2

0

dh

ð1� m sin2 hÞ1=2

e ¼
Z p=2

0

ð1� m sin2 hÞ1=2 dh

which can be approximated by polynomial approximations
defined in Abramowitz and Stegun [8].
A.2. Analytically integrated flux kernel

For the flux kernel, the analytically integrated expres-
sions (Fc) can be expressed as

F 1 ¼ 1

3
½Q1F 2 þ Q2F 1� þ

2

3
cos hn

� �

� ½Q1F 3 þ Q2F 2�

F 1 ¼ 1

3
½Q1F 2 þ Q2F 1� þ

ffiffiffi
3
p

3
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1

3
cos hn

 !

� ½Q1F 3 þ Q2F 2�

F 1 ¼ 1

3
½Q1F 2 þ Q2F 1� þ �

ffiffiffi
3
p

3
sin hn �

1

3
cos hn

 !

� ½Q1F 3 þ Q2F 2�

In the above expressions

Q1 ¼ �
R

4pk
RLnr and Q2 ¼

R
4pk
½Rnr þ ðzx � znÞnz�

where, the term RL represents the relative translation
added to the field coordinate (see Section 3, Eq. (7)), nr

and nz are normals in local coordinates at the integration
points and the other terms have their usual meanings de-
fined earlier.

The terms F1, F2 and F3 are functions of elliptic integrals
defined as

F 1 ¼
Z 2p

0

dh
r3
¼ 4A1=R3

d

F 2 ¼
Z 2p

0

cos hdh
r3

¼ �4ð2A2 � A1Þ=R3
d

F 3 ¼
Z 2p

0

½ðcos h� sin hÞ2 � 2 sin2 h cos2 h�dh
r3

¼ 4ð4A3 � 4A2 þ A1Þ=R3
d
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with

A1 ¼
Z p=2

0

dh

ð1� m sin2 hÞ3=2
¼ e

m1

A2 ¼
Z p=2

0

cos2 hdh

ð1� m sin2 hÞ3=2
¼ j� e

m

A3 ¼
Z p=2

0

cos4 hdh

ð1� m sin2 hÞ3=2
¼ ½eð1þ m1Þ � 2m1j�=m2

where, the terms have their usual meanings defined
earlier.

These expressions can be then integrated with respect to
r to provide the contributions of the end disc (refer to Sec-
tion 3, Eq. (13)) and also with respect to z for the longitu-
dinal direction.
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